
Standards
Alignment

Guide

Coding and Computational Thinking with VEX V5
Curriculum Standards Alignment Guide

Computer Science Teachers Association (CSTA), Computer Science Principles (CSP),
Next Generation Science Standards (NGSS), Common Core Mathematics, Common
Core English Language Arts, International Society for Technology in Education (ISTE)

Last Updated: 2/2022

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
1

The Standards
These standards are aligned with the instruction in Coding and Computational Thinking with VEX
V5 to ensure that all students are given clear and precise instructions and that teaching practices
focus on the learning objectives. These standards can be used to track student performance and to
set expectations for student achievement.

1. Computer Science Teacher Association Standards (CSTA) | Pg. 2-3

2. Computer Science Principles (CSP) | Pg. 4

3. Next Generation Science Standards (NGSS) | Pg. 5

4. Common Core Mathematics | Pg. 6

5. Common Core English Language Arts | Pg. 7

6. International Society for Technology in Education (ISTE) | Pg. 8

The Big Ideas
Robotics can be something you teach with, as well as something you teach about. Coding and
Computational Thinking with VEX V5 uses robots, and covers robotics content, but ultimately
seeks to give students experience and access to a much broader set of skills and perspectives of
Computational Thinking.

1. Role of the Programmer

2. Sense, Perceive, Plan, Act

3. Making Sense of Systems

4. Planning in Pseudocode

5. Computational Thinking applies Everywhere

6. Troubleshooting Robots

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
2

Computer Science Teacher Association Standards
Standard Connection to Curriculum

1-AP-14: Debug (identify and fix) errors in an
algorithm or program that includes sequences
and simple loops.

Students rearrange and modify the sequence in
algorithms and in Try It activities to test and
debug programs.

1B-AP-09: Create programs that use variables
to store and modify data. Variables are used to
store and modify data.

Students define and use variables in programs
for the robot to store and retrieve data. For
example, students create a variable for a
sensor threshold value that is used in an
operation compared to the sensor analog
value.

1B-AP-10: Create programs that include
sequences, events, loops, and
conditionals.

Students write programs that include
commands in a sequential order, repeated
behaviors with loops, and decision-making
behaviors with conditionals.

2-AP-13: Design and iteratively develop
programs that combine control structures,
including nested loops and compound
conditionals.

Students write programs
decision-making behaviors by nesting
if-else conditional
statements inside loops to enable robot
line tracking.

2-AP-19: Document programs in order to
make them easier to follow, test, and debug.

Students practice pseudocoding and code
commenting that allows for easier program
comprehension, troubleshooting, and
debugging.

2-AP-14: Create procedures with parameters
to organize code and make it easier to
reuse.

Students make large programs simpler and
organized by writing functions with parameters.
For example, students recognize repeated
behaviors in line tracking behaviors and turn
those sections of code into functions so that
those sections can be reused, and the program
is easier to read.

2-AP-12: Design and iteratively develop
programs that combine control structures,
including nested loops and compound
conditionals.

Students control programs by using WaitUntil
commands, conditional loops, and if-else
statements. For example, to enable the robot
to perform line tracking behaviors, students
embed if-else statements that are nested
within a conditional loop.

2-AP-11: Create clearly named variables
that represent different data types and
perform operations on their values.

Students define and use variables in programs
for the robot to store and retrieve data.

2-AP-10: Use flowcharts and/or pseudocode
to address complex problems as
algorithms.

Students develop pseudocode to organize and
sequence an algorithm that addresses a
complex problem.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
3

(Continued) Computer Science Teacher Association Standards
Standard Connection to Curriculum

3A-AP-17: Decompose problems into smaller
components through systematic analysis,
using constructs such as procedures,
modules, and/or objects.

Challenges within the curriculum directs
students to decompose problems into smaller
components and build solutions up
accordingly.

3B-DA-05: Use data analysis tools and
techniques to identify patterns in data
representing complex systems.

Sensors and other components on the robot
collect analog values that the students
analyze and apply to enhance the accuracy
of their programs and better predict solution
outcomes.

3B-AP-10: Use and adapt classic algorithms
to solve computational problems.

Challenge activities result in the creation
of a (simple) algorithmic solution and an
accompanying program that implements it.

3A-AP-21: Evaluate and refine
computational artifacts to make them
more usable and accessible.

Students debug and modify their own programs
to make improvements and compare the
outcomes.

3A-AP-16: Design and iteratively develop
computational artifacts for practical intent,
personal expression, or to address a
societal issue by using events to initiate
instructions.

Students design programs to create solutions
for model challenges that are based on
real-world challenges robots face.

1B-CS-03 Determine potential solutions to
solve simple hardware and software
problems using common troubleshooting
strategies.

Students learn that it is important to consider
all subsystems (code, mechanical
construction, and electrical subsystem of a
robot) when troubleshooting. They learn best
practices and helpful tips on how to perform
troubleshooting for each subsystem.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
4

Computer Science Principles

Standard Connection to Curriculum

LO 1.1.1: Use computing tools
and techniques to create
artifacts.

Challenge activities result in the creation of a
(simple) algorithmic solution and an accompanying
program that implements it.

LO 1.1.3: Analyze
computational artifacts.

Students perform debugging on their own code, as well
as debugging example solutions in practice programs
and Check Your Understanding questions.

LO 1.3.1: Use programming
as a creative tool.

Challenges are designed so that there are multiple
solutions to a problem along with some extra challenges
and extension activities. Students use programming to
solve model challenges based on real-world events and
can solve these challenges based on their own ability
and agency.

LO 2.2.1: Develop an abstraction. Robots gather information about the world through
sensors, which turn physical qualities of the world into
digital abstractions. Students must understand and work
with this data to develop then implement their solution
algorithms.

LO 2.3.1: Use models and
simulations to raise and answer
questions.

Students construct and use a “program flow” model of
programming itself to understand how the robot uses data
to make decisions and control the flow of its own
commands.

LO 3.2.1: Use computing to
facilitate exploration and the
discovery of connections in
information.

“Try It” activities allow students to uncover new
concepts and make connections with the learning
material and real world applications of robotics.

LO 4.2.1: Express an algorithm
in a language.

Students plan, write, and produce algorithms in
VEXcode Pro.

LO 5.2.1: Use abstraction to
manage complexity in programs.

Students use the process of abstraction by writing
pseudocode and creating functions so that complex
programs are organized, accurate, and easier to
read.

LO 5.3.1: Evaluate a program
for correctness.

Students perform debugging on their own code, as well
as debugging example solutions in practice programs
and Check Your Understanding questions.

LO 5.3.2: Develop a correct program. Programmed solutions to challenges must work.

LO 5.4.1: Employ appropriate
mathematical and logical concepts
in programming.

Students use mathematical concepts in programming
by writing conditional statements with comparison
operators and finding relationships in the number of
wheel rotations and distance traveled or degrees
turned.

LO 7.2.1: Connect computing
with innovations in other fields.

Students discuss how the process of abstraction and
decomposition in programming and robotics can be
applied to other subjects and fields of work.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
5

Next Generation Science Standards

Standard Connection to Curriculum

MS-ETS1-2: Evaluate competing
design solutions using a systematic
process to determine how well they
meet the criteria and constraints of
the problem.

Solving challenges requires students to create and
evaluate both hardware and software designs according
to scenario scoring criteria.

MS-ETS1-4: Develop a model to
generate data for iterative testing
and modification of a proposed
object, tool, or process such that an
optimal design can be achieved.

When solving more difficult and complex challenges,
students are guided toward iterative testing and
refinement processes. Students must optimize program
parameters and design.

HS-ETS1-2: Design a solution to a
complex real-world problem by
breaking it down into smaller, more
manageable problems that can be
solved through engineering.

Problem Solving methodology for challenges directs
students to break down large problems into smaller
solvable ones, and build solutions up accordingly;
challenges give students opportunities to practice, each
of which is based on a real-world robot

HS-ETS1-3. Evaluate a solution to
a complex real-world problem
based on prioritized criteria and
trade-offs that account for a range
of constraints, including cost,
safety, reliability, and aesthetics as
well as possible social, cultural,
and environmental impacts.

Some Discussion Questions require students to
consider real-world policies (e.g. requiring sensors on
automobiles) based on the impact of that decision.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
6

Common Core Mathematics
Standard Connection to Curriculum

CCSS.MATH.CONTENT.7.G.B.4:
Know the formulas for the area and
circumference of a circle and use
them to solve problems

Students calculate and use circumference to
discover a proportional relationship with robot turns.

CCSS.MATH.CONTENT.7.RP.A.2:
Recognize and represent
proportional relationships between
quantities.

Students use ratio language to describe and make use of
the relationship between quantities such as Wheel
Rotations and Distance Traveled.

CCSS.MATH.CONTENT.6.G.A.3:
Draw polygons in the coordinate
plane given coordinates for the
vertices; use coordinates to find the
length of a side joining points with
the same first coordinate or the
same second
coordinate. Apply these techniques
in the context of solving real-world
and mathematical problems.

Students program shapes with specific (x, y, w, h)
parameters to a coordinate system on the robot
brain’s screen.

CCSS.MATH.CONTENT.2.MD.A.1:
Measure the length of an object by
selecting and using appropriate tools
such as rulers, yardsticks, meter
sticks, and measuring tapes.

Students measure the distance the robot travels
using a measuring tool.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
7

Common Core English Language Arts
Standard Connection to Curriculum

CCSS.ELA-LITERACY.RST.9-10.
7: Translate quantitative or
technical information expressed
in words in a text into visual form
(e.g., a table or chart) and
translate information expressed
visually or
mathematically (e.g., in an
equation) into words.

Students write pseudocode that consists of a
hybrid language between written English and
coding syntax and then translate it into code.

CCSS.ELA-LITERACY.RST.9-10
.9: Compare and contrast
findings presented in a text to
those from other sources
(including their own
experiments), noting when the
findings support or contradict
previous explanations or
accounts.

Students compare the results they find after the
robot executes their program to how it is shown in
the curriculum.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
8

International Society for Technology in Education
Standard Connection to Curriculum

1.5: Students develop and
employ strategies for
understanding and solving
problems in ways that
leverage the power of
technological methods to
develop and test solutions.

Students learn “Big Ideas” such as program
flow, role of the programmer, planning in
pseudocode, and more to develop problem
solving skills in computer science.

1.5a: Students formulate
problem definitions suited for
technology assisted methods
such as data analysis, abstract
models and algorithmic
thinking in exploring and
finding solutions.

Students create solutions to challenges by using
sensor data to predict outcomes, planning in
pseudocode, and then translating the
pseudocode into an algorithmic program which
is a form of abstraction.

1.5b: Students collect data or
identify relevant data sets, use
digital tools to analyze them,
and represent data in various
ways to facilitate problem-
solving and decision-making.

Students use sensors to collect data and
program the robot to respond according to the
data analyzed.

1.5c: Students break problems
into component parts, extract
key information, and develop
descriptive models to
understand complex systems
or facilitate problem-solving.

During the process of pseudocoding,
students decompose large solutions into
smaller tasks in order to understand what
exactly the robot is needed to do.

1.5d: Students understand
how automation works and
use algorithmic thinking to
develop a sequence of steps
to create and test automated
solutions.

Students write programs for the robot including
sequences of commands and control
commands so that the robot can complete
challenges autonomously.

Coding and Computational Thinking with VEX V5 - Standards Alignment Guide
9

The Big Ideas

▪ Big Idea #1: Role of the Programmer
Students learn the roles and responsibilities of a programmer, which is to identify the
task, plan out a solution, decompose that solution into steps that the robot can carry out,
and then explain the steps to the robot through a program. As a programmer, it is
important to keep programs precise. If you want the robot to do something, you need to
communicate that idea with mathematical and logical precision, or it won’t quite be what
you intended. ¨

▪ Big Idea #2: Sense, Perceive, Plan, Act
Sensors provide information about the world. The program uses that information to
figure out when to stop. And then the robot acts accordingly. Sense, Perceive, Plan, Act
(SPPA) summarizes the four critical capabilities that every robot must have in order to
operate effectively. ¨

▪ Big Idea #3: Make Sense of Systems
To understand the way something works, students construct a mental “model” of it that
captures the important features and rules of the system. This helps with understanding
Program Flow and how other similar systems work and execute programs. ¨

▪ Big Idea #4: Planning in Pseudocode
Students learn to plan complex programs in pseudocode so that their programs can be
accurate and organized. The process of pseudocoding involves the decomposition of
large tasks into smaller steps. And then abstracting those steps to be translated into
code so that the robot can understand its task. ¨

▪ Big Idea #5: Computational Thinking Applies Everywhere
These skills – mathematical and logical clarity, using data, systems thinking with mental
models, and problem solving – are not just for robotics. They are key to solving many
problems in the world.

▪ Big Idea #6: Troubleshooting Robots
It is important to understand that troubleshooting in robotics is not just about finding
errors in a program. A robot is a programmable, electro-mechanical device, meaning
there are multiple subsystems to consider when troubleshooting. Students learn the best
practices and helpful tips on troubleshooting their program, mechanical construction, and
electrical subsystem of the robot.

